Normal Distribution Function
因为微几何体的所以平面的方向,并不是均匀分布的,如果是分布比较均匀的光滑平面,那么光就会在几乎相同的方向反射,产生清晰的高光,如果粗糙表面则是模糊的高光. 有多少微平面点的法线更倾向宏观平面的法线方向,我们把这种平面法线方向分布的统计,称之为microgeometry normal distribution function D(),和fresenl方程不同的是,D()并没有一个类似0~1的范围,而是来帮助确定微平面法线在某一个给定方向上的集中度。
这因为有这种现象,所以需要有一个Geometry Function G(),来代表反射光的可见度,所以G()是在0~1之间的一个范围值,在着色模型里,有时会和其他参数合并称为V()(Visiblity)。和D()一样,因为微平面有凹凸感,当它的粗糙度提高时,shadow和masking的现象也会增加,粗糙度高的平面会光滑平面更阴暗一些,G()也要收到roughness参数的影响。另外G()也是下面要讲的能量守恒的一个基础,它使得反射光不会高于平面的入射光。
Energy Conservation 能量守恒
镜面反射光(Specular)与漫反射光(Diffuse)是相互排斥的,因为离开表面的光总量不能他接受的入射光强,你的漫反射与镜面反射综合不能超过1 [url=][/url]
这意味着,如果你的希望材质有较高的镜面反射效果(高反射率),就需要要去降低漫反射,能量守恒是PBR的一个重要的方法,可以让艺术家在设置反射率和反照率时(高光颜色和漫反射颜色)不会违法物理定律
漫反射光与镜面光(diffuse and specular)
这里,我们光和平面交互分为两个项目来描述,从平面直接反射的部分称为镜面反射光(Specular),来源于拉丁语的“Mirror”,另外一部分光,传入到物体内部,而经过折射,被材质吸收(转变为热能),或者内部进行散射,一些散射光最终会重新返回从平面折射出来,并被摄像机或眼睛所捕捉到,称为漫反射光(Diffuse)。漫反射光被物质吸收并散射后,会成为不同波长的光,这也就给予了物体颜色,比如物体吸收了蓝色以外的光,那物体就是蓝色的,而因为散射的混乱比较均匀,从每个方向看起来都是一样,所以这点和镜面光不一样。也可以使用这个名字albedo来描述。